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editing efficiency can be significantly
increased to 65–100% if the gRNAs
are fused to a mobile RNA sequence,
such as truncated FLOWERING
LOCUS T (FT) [10]. This suggests that
a mobile RNA sequence allows gRNAs
to move between cells, thus enabling
targeting of genomic sequences in mer-
istem and germline cells. It may there-
fore be possible to fuse the Cas9/
gRNA system with a mobile RNA se-
quence, and then use the corresponding
engineered SYNV virus to infect plants,
thus achieving genome editing completely
independently of tissue culture (Figure 1).
With these improvements, one can envis-
age editing a trait of choice in virtually any
plant, be it in the field or elsewhere, to obtain
transgene-free genome editing for biotech-
nological improvement of crops.
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Host PolymorphismsMay
Impact SARS-CoV-2
Infectivity
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Based on a broad public database
compilation, we support the hy-
pothesis that germinal polymor-
phisms may regulate the expression
of the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2)
cellular target itself and proteases
controlling the process of its shed-
dingor, conversely, its internalization.
Consequently, a genetic influence on
individual susceptibility to coronavi-
rus disease 2019 (COVID-19) infec-
tion is strongly suspected.

General Background
In addition to the need for virus detection,
evaluation of individual serological re-
sponse [1], and biological analytical tools
to manage COVID-19 on a population
level, there is an urgent need to obtain
objective information to identify at-risk indi-
viduals and to understand the marked var-
iability in the severity of the disease in

general, as well as in given populations. A
current hypothesis is that SARS-CoV-2 clin-
ical manifestations are governed by human
genetics [2]. Thus, in this context, here we
develop two complementary themes: (i) a
more thorough examination of the mem-
brane shedding of angiotensin-converting
enzyme 2 (ACE2), the SARS-CoV-2 cellular
target, and its potential repercussion on
virus propagation; and (ii) a description
of the interindividual variability of the genes
(SNPs) involved in ACE2 processing and
their potential impact on the risk of
contracting COVID-19.

ACE2 Expression and COVID-19
Chen et al. recently examined a large
Genotype–Tissue Expression (GTEx) da-
tabase and investigated the expression of
ACE2 in different human tissues [3]. The
authors stressed that, counterintuitively,
expression of the SARS-CoV-2 target
was inversely related to certain risk
factors, showing higher levels in Asian
females compared with Asian males and
a significant decrease in patients with
type 2 diabetes mellitus. Globally, at a
population level, there was a negative
correlation between ACE2 expression
and COVID-19 severity. Recent data pro-
vide evidence that ACE2 is effectively
shed from membranes, a process that is
fine-tuned at different levels [4] involving
two cell membrane proteases: disintegrin
and metalloproteinase domain-containing
protein 17 (ADAM17) and transmembrane
protease serine 2 (TMPRSS2) [4]. More
precisely, ADAM17 acts directly on ACE2
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Glossary
Expression quantitative trait locus (eQTL): a
genomic locus that explains the variation in gene
expression of nearby genes.
Insertion/deletion (Indel): an insertion or deletion of
bases in the genome.
Minor allele frequency (MAF): frequency at which
the second most common allele occurs in a given
population.
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Figure 1. Graphic Support for the Hypothesis of Angiotensin-Converting Enzyme 2 (ACE2)-Related
Virus Neutralization at Distance due to the Presence of Enzymatic Membrane Mechanisms
Regulating ACE2 Shedding and Virus Entry. Abbreviations: ADAM17, disintegrin and metalloproteinase
domain-containing protein 17; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TMPRSS2,
transmembrane protease serine 2.

and leads to ACE2 shedding into the ex-
tracellular cellular space, while TMPRSS2
cleaves not only ACE2, but also the S
protein of SARS-CoV-2, thus leading to
membrane fusion and cellular uptake of
the virus. Consequently, while ADAM17
and TMPRSS2 both act on ACE2, they
may have opposite effects on net ACE2
shedding (Figure 1). When the respective
proteolytic activities of ADAM17 and
TMPRSS2 result in more ACE2 shedding
than internalization, it follows that this
situation may constitute a natural barrier
to infection. This could be due to the inter-
action between soluble ACE2 with the
virus at a distance from sensitive tissues.
Subsequently, on this basis, one can
hypothesize that, when the viral load is
high, the shedding barrier effect is

overwhelmed, thus facilitating subsequent
infection.

ACE2, TMPRSS2, and ADAM17
Gene Polymorphisms
Cao et al. [5] compiled a database analysis
of all 1700 variants in the region of the
ACE2 gene located on the X chromosome.
They identified 15 unique expression
quantitative trait loci (eQTLs; see
Glossary) variants [14 SNPs and 1
insertion/deletion (INDEL)] with higher
minor allele frequencies (MAF) in the
Asian population than in a European
population (MAF of 0.05 versus 0.35–0.48
for the top six most common variants).
Interestingly, their data showed that the
11 most common variants (MAF N0.05)
were associated with increased expression

of ACE2 in tissues, suggesting, according
to the authors, a different sensitivity
to SARS-CoV-2 infectivity. However,
the functional basis of the influence of
SNP on ACE2 expression remains to
be established.

In this context, we performed a comple-
mentary in silico study including SNPs reg-
ulating gene expression not only for ACE2,
but also for ADAM17 and TMPRSS2
(Table S1 in the supplemental information
online). Overall, and based on the ACE2
expression-associated MAF between eth-
nic populations, it appears that Asians
express a higher level of ACE2 than
Caucasians, while Africans show an inter-
mediary level of ACE2 expression. This is
consistent with the findings previously
reported by Cao et al. [5]. It is still debat-
able whether these differences should be
taken into consideration in epidemiological
studies on COVID-19 covering ethnic as-
sociations with disease occurrence [6].
Importantly, the diseases associated with
a high level of SARS-Cov-2 infection (hy-
pertension and diabetes) were found to
be related to a lower expression of ACE2,
in relation to the respective allelic distribu-
tion. This relationship concurs well with
the study by Chen et al. pointing towards
a negative correlation between ACE2 ex-
pression and COVID-19 severity [3].

It has been reported that subjects with
rs383510/T and rs2070788/G genotypes
of TMPSRSS2 located on chromosome
21q22.3 are more prone to develop a
severe form of A (H1N1) influenza and
acute respiratory distress syndrome [7].
Of note, males have been shown to be
more likely to develop a severe form of
H1N1 influenza and there is evidence
that androgens are positive regulators of
TMPRSS2 [8]. Importantly, the alleles at
risk (T for rs383510 and G for rs2070788)
are linked to increased gene expression
(Table S1 in the supplemental information
online), logically supporting the hypothesis
of a higher level of viral cell entry. It is
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tempting to extrapolate this SNP influence
to SARS-CoV-2 infectivity.

The ADAM17 locus on chromosome
2p25.1 presents two clusters and three
unique SNPs that induce strong differ-
ences in terms of allelic profiles between
Asian and European populations that are
associated with hypertension [9] and/or
sepsis [10]. Of note, most of these SNPs
are located in the promoter region of
ADAM17 and are associated with either
positive or negative eQTL, depending
on the SNP and the tissue (Table S1
in the supplemental information online).
Therefore, there is a strong possibility
that genetic polymorphisms influencing
ADAM17 expression also contribute
to the modulation of ACE2 shedding
intensity.

Practical Consequences
Taken together, the above-discussed
data advocate in favor of a multifactorial
genetic impact on the risk of SARS-Cov-2
infectivity and possible disease severity.
A relatively simple and easy-to-perform
test, such as quantitative PCR [11] or
MASSarray [12], would allow large-scale in-
dividual SNP profiling for ACE2, ADAM17,
and TMPRSS2 to identify possible at-risk
populations vulnerable to viral infection.
On this basis, a ‘multiSNPs risk score’
could be established that would be appli-
cable to large populations and, thus, it
might then be possible to identify subjects
carrying a combination of favorable alleles
for ACE2, ADAM17, and TMPRSS2 con-
ferring a lesser risk of contracting SARS-
Cov-2 infection, and vice versa. Such an
analytical strategy was recently developed
based on patient genetic characteristics
for immunogenetic profiling designed to

personalized immunotherapy [12]. A similar
supervised genetic approach to COVID-19
risk assessment could complement the
current unsupervised GWAS investigations,
which require large population studies ex-
ploring the whole patient genome for DNA
variations in an attempt to explain interindi-
vidual differences in COVID-19 severity
[e.g., the Howard Hughes Medical Institute
(HHMI) genetic projecti and the COVID-19
Human Genetic Effort [2]). Ideally, in
a final step, a multifactorial predictive
index could be established incorporating
SNP analysis and other, more established,
risk factors.

In summary, until now, genetic influ-
ences on COVID-19 interindividual sus-
ceptibility have been largely
underestimated; thus, we hope that
the discussion might fill this gap and
will pave the way for confirmatory in-
vestigations at experimental and clinical
levels.
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